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Abstract
Multicomponent KdV systems are defined in terms of a set of structure constants
and, as shown by Svinolupov, if these define a Jordan algebra the corresponding
equations may be said to be integrable, at least in the sense of having higher-
order symmetries, recursion operators and hierarchies of conservation laws. In
this paper the dispersionless limits of these Jordan KdV equations are studied.
Recursion laws for conserved densities are given under the assumption that
the algebra possesses a unity element. Sufficient conditions are given for the
unitized counterpart of a diagonalizable non-unital system to be diagonalizable.
Hamiltonian structure is discussed within the context of DN Jordan algebras
and CP

N scattering problems.

PACS numbers: 0220, 0230, 0240, 0540

1. Introduction

The connection between Jordan algebras and multicomponent KdV was first obtained by
Svinolupov [Sv]. He found that a necessary condition for the system

uit = uixxx + aijku
jukx i, j, k = 1, . . . , N (1)

(where the fields ui depend on x and t alone and the ajk
k are constants, symmetric in the

lower indices) to possess higher symmetries and conservation laws was that the (commutative)
algebra J = 〈ei, i = 1, . . . , N〉 defined by the constants aijk via

ei ◦ ej = ekij ek

had to be Jordan; that is, for all x, y ∈ J , (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x). The purpose of
this paper is to study various properties of the dispersionless limits of this system, namely the
hydrodynamic system

uit = cijku
jukx. (2)
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The ideas will be illustrated by means of the example

uit =
(
ui

N∑
j=1

uj

)
x

(3)

which is the dispersionless limit of the KdV system associated with a CP
N -scattering problem.

The structure constant are just

aijk = δij + δik.

It is easy to show that this is a non-associative Jordan algebra which does not contain a unity
element.

A basic result in the theory of Jordan algebras [Sc], but one which does not appear to have
been utilized in the theory of integrable systems is the idea of unitizing an algebra. Suppose the
Jordan algebra J does not contain an identity element (an example being the above algebra).
Then one may adjoin an identity element e0 to form a new algebra Ĵ = J ∪ 〈e0〉, with
multiplication defined by

x̂ ◦ ŷ = (λe0 + x) ◦ (µe0 + y)

= λµe0 + (λy + µx + x ◦ y).
It is straightforward to show that Ĵ is also Jordan:

(x̂2 ◦ ŷ) ◦ x̂ − x̂2 ◦ (ŷ ◦ x̂) = 2λ{(x ◦ y) ◦ x − x ◦ (y ◦ x)} + (x2 ◦ y) ◦ x − x2 ◦ (y ◦ x)
= 0.

Note that the result is false for generalizations of Jordan algebras where the commutativity
condition is removed.

The unitized counterpart of the system (3) is the (N + 1)-component system

u0
t = u0u0

x

uit =
(
ui

N∑
j=0

uj

)
x

i = 1, . . . , N.
(4)

The existence of a unity element enables a simple recursion scheme to be formulated for
the conserved densities of the hydrodynamic system. This will be considered in section 2.
Criteria for the diagonalizability of unitized systems are considered in section 3. In section 4
the Hamiltonian structure of the system (3) and its unitized counterpart (4) will be studied.

2. Conservation laws and the unity element

Owing to the commutativity of the algebra Ĵ the hydrodynamic system automatically has
N -conservation laws:(

ui
)
t
= (

1
2c

i
jku

juk
)
x
.

Here a hierarchy of conserved densities h(n) will be constructed recursively [St1].
Any hydrodynamic conservation law

Q[u]t = flux[u]x

may be expanded, using (2), yielding

∂ flux

∂uk
= ajk

iuj
∂Q

∂ui
.
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The integrability condition for this is

ajk
iuj

∂2Q

∂ui∂up
= ajp

iuj
∂2Q

∂ui∂uk
. (5)

By differentiating this with respect to u0, the unity element, one finds that ∂Q/∂u0 satisfies the
same equation, and hence is also conserved. These conserved densities are all homogeneous
and may be labelled by their degree, so by Euler’s theorem

ui
∂h(n)

∂ui
= nh(n). (6)

They may also be normalized so that

∂h(n)

∂u0
= h(n−1). (7)

The basic relation (5) may also be used to derive a recursion relation amongst the densities.
Let p = 0 in (5), so, on using the unity relation, equations (6) and (7) give

ajk
iuj

∂h(n−1)

∂ui
= (n − 1)

∂h(n)

∂uk
. (8)

Multiplying by uk and using Euler’s theorem (6) again yields

h(n) = 1

n(n − 1)
ajk

iujuk
∂h(n−1)

∂ui
. (9)

Alternatively, from (8) and Euler’s theorem one may derive[
∂2h(n)

∂ui∂uj
− cij

k ∂h
(n−1)

∂uk

]
uj = 0.

The term in square brackets will not, in general, be zero, but for Frobenius manifolds it does
vanish, while in the example below it does not.

The above derivation holds, in part, for any commutative algebra with a unity. However,
the derivation of (9) only uses a subset of the relation in (5); thus one must show that the
h(n) constructed from h(n−1) via (9) satisfies all of the relations in (5). In general, there is an
obstruction [St2], related to the failure of the algebra from being associative. For example, the
unitized version of the dispersionless limit of Ito’s system has none-vanishing obstructions.
For simple systems, such as (3) and (4) one may bypass these general considerations and
construct conservation laws directly.

Example. (The D3-Jordan algebra). The only three-dimensional irreducible Jordan algebra
is, up to isomorphisms, defined by the multiplication table

e0 ◦ ei = +e0

ei ◦ ei = −e0

ei ◦ ej = 0 for i �= j i �= 0 j �= 0.

This gives rise to the hydrodynamic system

ut = −3(u2 − v2 − w2)x

vt = −6(uv)x

wt = −6(uw)x.

(10)
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The first few conserved densities are:

h(2) = 1

2!

{
u2 − v2 − w2

}
h(3) = 1

3!

{
u3 − 3u(v2 + w2)

}
h(4) = 1

4!

{
u4 − 6u2(v2 + w2) + (v2 + w2)2

}
.

The general terms may easily by derived:

h(n) = 1

n!

[n/2]∑
r=0

(−1)r
(

n

2r

)
(v2 + w2)r u(n−2r).

These may be amalgamated into a generating function, the coefficients of λ in the power-series
expansion being the conserved densities,

Q(λ) = eλu cos λ
√
v2 + w2.

Similarly, there is a second family of conservation laws given by the generating function

Q(λ) = eλu sin λ
√
v2 + w2.

These may be combined as

Q(λ) = eλ(u±i
√
v2+w2).

Example. For the simple systems (3) the function f (
∑N

i=1 u
i) is a conserved density for any

function f . For the unitized system (4) the function f (u0 + 2
∑N

i=1 u
i) + g(u0) is conserved

for any functions f and g . To satisfy the homogeneity and recursion formulae one may take

h(n) = 1

n!

(
u0 + 2

N∑
i=1

ui

)n

+
1

n!

(
u0
)n
.

3. Diagonalizable criteria for unitized systems

A necessary and sufficient condition for a hydrodynamic system

ui t = vij (u) u
j
x

to be put into Riemann invariant form1

Ri
t = vi[R]Ri

x

is the vanishing of the Haantjes tensor [N, H]. This is defined in terms of the Nijenhuis tensor

Ni
jk = v

p

j ∂pv
i
k − v

p

k ∂pv
i
j − vip(∂jv

p

k − ∂kv
p

j )

by

T i
jk = Ni

prv
p

j v
r
k − N

p

jrv
i
pv

r
k − N

p

rkv
i
pv

r
j + N

p

jkv
i
rv

r
p.

1 The summation convention is not used for diagonal coordinates.
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If this vanishes then the hydrodynamic system is integrable using the generalized hodograph
transform [T].

For any dispersionless Jordan KdV system the Nijenhuis tensor is linear:

Ni
jk = !jrk

iur

where

!ijk
s = aij

rark
s − ajk

rair
s .

This is the associator of the algebra, the failure of the algebra from being associative:

ei ◦ (ej ◦ ek) − (ei ◦ ej ) ◦ ek = !s
ijkes .

This shows that any dispersionless KdV equation arising from a commutative associative
algebra is diagonalizable.

Suppose that a particular Jordan algebra without unity gives rise to a diagonalizable system,
i.e. a vanishing Haantjes tensor. What can be said concerning the Nijenhuis and Haantjes tensor
for the unitized system? It is easy to show that for any algebra with a unity element e0 that
!s

ijk = 0 if any one of the lower indices takes the value zero. For the unitized system it also
follows that !s

ijk = 0 if the upper index is zero. It follows from this that if the original system
has a vanishing Hanntjes tensor, the only possible non-vanishing terms for the Hanntjes tensor
of the unitized system are T i

0j , i, j �= 0 . Thus one has a reduced set of diagonalizability
criteria.

If the Riemann invariantsRi for the non-unitized system are homogeneous functions of the
variables u1, . . . , uN then it is straightforward to determine whether or not the unitized system
is diagonalizable. Suppose that Ri is homogeneous of degree ni ; then by Euler’s theorem,

N∑
j=1

uj
∂Ri

∂uj
= niR

i. (11)

If {vi}, i = 1, . . . , N are the speeds of the non-unitized system, then it is clear that the
unitized system has speeds of {u0, vi + u0}. It is also clear that u0 is a Riemann invariant for
the unitized system; set R0 = u0. Hence for the extended system, it is seen that

Ri
t = (vi[R] + R0)Ri

x + niR
iR0

x. (12)

This simple relation shows that the Riemann invariants for the non-unitized system still play a
role in the unitized system, reducing the number of entries in the hydrodynamic matrix from
(N2 + N + 1) to (2N + 1). In particular, if Ri is a homogenous function of degree zero, then
Ri is also a Riemann invariant for the unitized system. Thus if ni = 0 ∀i, then the unitized
system is diagonalizable and the Riemann invariants for the old system are also the Riemann
invariants for the new system.

Now let f i(R0, R1, . . . , RN) be a smooth function. If this is a Riemann invariant for the
unitized system, then it will satisfy

∂f i

∂t
= (vi + R0)

∂f i

∂x
.

By equation (12), this is equivalent to the restriction{ N∑
j=1

njR
j ∂f

∂Rj
− vi

∂f i

∂R0

}
R0

x +
N∑
j=1

(vj − vi)
∂f i

∂Rj
Rj

x = 0.
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For two distinct speeds, vi �= vj , it follows from the above that ∂f i/∂Rj = 0. For simplicity,
suppose that a hydrodynamic system is strictly hyperbolic, i.e. all speeds are distinct. (The
more general case will be considered in [Mc1].) Then f i is a function of R0 and Ri only, and
satisfies the equation

niR
i ∂f

i

∂Ri
= vi

∂f i

∂R0
. (13)

Differentiating both sides with respect to Rj , i �= j , one finds that

∂vi

∂Rj
· ∂f

i

∂R0
= 0. (14)

From equation (13), if ∂f i/∂R0 = 0 then ni = 0; that is, Ri is a function of degree zero.
If ni �= 0, then it must be that ∂vi/∂Rj = 0, and so vi is a function of Ri only. Hence the
solution to equation (13) is

f i(R0, Ri) = φi(ri + niR
0) (15)

where φi is any smooth function and

ri =
∫

vi(Ri)

Ri
dRi.

It is thus seen that even if a non-unital system is diagonalizable, the corresponding unitized
system is only diagonalizable if the Riemann invariants are functions of degree zero or the
speeds vi are functions of the Riemann invariant Ri only.

Example. Both systems (3) and (4) are diagonalizable. For these systems one may calculate
the Riemann invariants directly, rather then relying on existence criteria.

For the non-unitized system (3), it is convenient to introduce the variable S = ∑N
j=1 u

j ,
allowing the system to be written as

uit = (Sui)x. (16)

It is immediately obvious that St = (S2)x . Now we introduce N − 1 quotients Rα = uα/u1,
where α = 2, . . . , N . It is easily verified that the Riemann invariant form of equation (3) is
given by

St = 2SSx

Rα
t = SRα

x.
(17)

The Riemann invariants Rα of the non-unitized system are homogeneous functions of degree
zero, and so are unchanged when a unity element is adjoined to the algebra. The Riemann
invariant S is a homogeneous function of degree one; as the speed 2S is unique, equation (15)
may be used without contradiction. Hence the transformed Riemann invariant isR1 = 2S+R0.
It may be verified by direct computation that the Riemann invariant form of the unitized system
(4) is

R0
t = R0R0

x

R1
t = R1R1

x

Rα
t = 1

2 (R
0 + R1)Rα

x

(18)

where again α = 2, . . . , N . Note that the characteristic speeds of system (17) are S and 2S,
with multiplicity N − 1 and 1, respectively, whereas the speeds of the unitized system are
u0, S + u0 and 2S + u0, with multiplicity 1, N − 1 and 1, respectively. Furthermore, note that
whenN = 2, equation (18) is just the Riemann invariant form of (10); in general, equation (18)
is the Riemann invariant form of the dispersionless KdV equations for a DN+1 Jordan algebra.
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4. Hamiltonian structure

A system of hydrodynamic type is said to be Hamiltonian if there exists a Hamiltonian
H = ∫

dx h(u) and a Hamiltonian operator

Âij = gij (u)
d

dx
+ b

ij

k(u) u
k
x (19)

which defines a skew-symmetric Poisson bracket on functionals

{F,G} =
∫

dx
δF

δui(x)
Âij δG

δuj (x)

which satisfies the Jacobi identity and which generates the system

uit = {ui(x),H }.
Dubrovin and Novikov [DN] proved necessary and sufficient conditions for Âij to be a
Hamiltonian operator in the case when gij is not degenerate. These are:

(a) g = (gij )−1 defines a (pseudo-)Riemannian metric;
(b) bijk = −gis+

j

sk , where +j

sk are the coefficients of the Levi-Civita connection;
(c) the Riemann curvature tensor of g is identically zero.

For diagonal systems, there is a simple formula for the metric coefficients [T], namely

∂ivj = 1
2 (vi − vj )∂i log gjj (20)

where i �= j and vi , vj are characteristic speeds. Note that the term (vi − vj ) normally
appears as a denominator on the left-hand side. However, for systems (17) and (18) there are
N − 1 repeated speeds, and so this would involve division by zero. For diagonal systems with
repeated speeds vi = vj , formula (20) is valid, provided that ∂ivj = 0. This last condition is
an example of what is sometimes referred to in the literature as weak nonlinearity.

Given a diagonalizable non-unital system whose unitized counterpart is also
diagonalizable, the (N + 1)-dimensional metric may be computed as an extension of the
original N -dimensional metric. Note, in particular, that the unitized system has speeds of
vi + u0, vj + u0 and so the factor (vi − vj ) in Tsarev’s formula (20) is unchanged.

Example. The Hamiltonian structure of the non-unitized system (17) is determined by the
metric

g = φ(S) dS2 + S2ψ(R) dR2 (21)

whereψ(R) dR2 = ψ(R1, . . . , RN−1)[(dR1)2+· · ·+(dRN−1)2], andφ(S),ψ(R) are arbitrary
functions of integration. In particular, when N = 2, φ(S) = 1 and ψ(R) = 1 the metric is

g = dS2 + S2 dR2 (22)

the metric for polar coordinates in R
2. However, this is the only flat metric belonging to the

class (21) of metrics. In general, the Hamiltonian structure of this system is non-local in the
manner described by Ferapontov [F]. Such structures have been calculated explicitly in [Mc2].

The Hamiltonian structure of the unitized system (18) is given by the metric

ĝ = α(R0)(dR0)2 + 1
4φ(

1
2R

1)(dR1)2 + 1
4 (R

1 − R0)2ψ(R) dR2 (23)

where α is some arbitrary function. Note that metric (23) reduces to (21) if the coordinate
reduction R0 = 0 is imposed, since R1 = 2S + R0. Analysis of metric (23) reveals that for
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N = 2, the (three-dimensional) metric is flat provided α and φ are constant. For N � 3 the
((N + 1)-dimensional metric) is flat if and only if α = 1

4 , φ = −4 and ψ(R) = 1. Hence
the unitized system has a single local Hamiltonian system for all N , whereas the non-unitized
system has a local structure when N = 2 only. There is also sufficient functional freedom in
these metrics to give a bi-Hamiltonian structure.

5. Comments

The idea of unitizing a dispersionless Jordan KdV system has been illustrated in this paper by
means of an example based on the dispersionless limit of a CP

N -valued scattering problem.
The idea, however, is more general and may be applied to other systems, notably those with
scattering problems associated with Hermitian symmetric spaces [FK]. More generally still,
the idea may be applied directly to the dispersive system (1). The properties of such systems
still need to be fully investigated.

In terms of their Hamiltonian structures, unitizing the system (3) corresponds to moving
from a curved (sub)manifold to its flat ambient space. Thus the curved submanifold is of
codimension, or embedding class, one for all valued of N . A classical result due to Cartan
states that an N -dimensional manifold may be embedded in a flat ambient space of dimension
(at most) N(N + 1)/2, and so has embedding class (at most) N(N −1)/2. The codimension is
also reflected in the length of the non-local tail in the corresponding Hamiltonian structure [F].

A question which one may therefore ask at this stage is whether or not dispersionless
unital Jordan KdV equations always possess a flat metric. For all well known simple Jordan
algebras with unity, there is a non-degenerate inner product on the algebra which may be used
to define a flat metric. However, there are many other Jordan algebras to be considered and a
study of these will contribute to a more complete understanding of integrable structures.
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